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Self-consistent field calculations including the complete overlap matrix have been made to
predict the electronic spectra of benzene, napthalene, anthracene and phenanthrene. The
results are remarkably similar to those obtained with the neglect of differential overlap.

On a fait des calculs SCF avec la matrice compléte des recouvrements afin de prédire les
spectres électroniques du benzéne, du naphtaléne, de I’anthracéne et du phénanthréne. Les
résultats ressemblent remarquablement & ceux obtenus en négligeant le recouvrement diffe-
rentiel.

SCF-Rechnungen unter EinschluB der vollstindigen Uberlappungsmatrix sind zur
Bestimmung der Elektronenspektren von Benzol, Naphthalin, Anthracen und Phenanthren
unternommen worden. Die Xrgebnisse sind den unter Vernachlissigung der differentiellen
Uberlappung erhaltenen bemerkenswert shnlich.

There has been in recent years a continuing interest in the interpretation of
electronic spectra and structure of aromatic hydrocarbons. To date, however,
self-consistent field calculations including estimates of all repulsion and overlap
integrals have been carried out only for cyclic systems [2, 14, 35] and for relatively
small molecules [29]. To avoid laborious computation, it has been usual to employ
the approximation of neglect of differential overlap, characterized by
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RuEDENBERG [39a] discusses the approximation and decides that it is valid
and effective if the atomic orbitals satisfy MULLIREN’s approximation [24]

X (1) 2 (1) = % Suw [ (1) o (1) -+ 1 (1) 2 (1)] (2)

and if the molecular orbitals simultaneously diagonalize the overlap matrix.
At this time a more direct check of the approximation seems desirable.

What is being considered is the semi-empirical self consistent field theory
of the unsaturation electrons of aromatic hydrocarbons; the theory is that ex-
pounded by PorLE [32], PaRrtsER and PARR [26], except that the complete overlap
matrix and the complete repulsion supermatrix are used at all stages of the calcu-
lation. It becomes necessary also to include the effects of penetration of the mobile
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electrons into the o-electron core. Since no new concepts are introduced such a
calculation represents a principally technical advance. At the time of the works
quoted [26, 33], a complete SCF calculation presented a computational problem
of unreasonable size; advances in computational machinery and programming
systems have since reduced the difficulty to the point that calculation of the self-
consistent orbitals of a molecule as large as tetracene is neither difficult nor
unreasonably costly*.

Large differences between the predictions of the zero overlap procedure and
the theory including all overlap and repulsion contributions are not to be expected
[16, 25]. The uniform success of the method of PARISER, PARR [2, 26] and PoPLE
[33] for the elucidation of visible and ultraviolet spectra, as well as for the prediction
of hyperfine coupling constants in the electron spin resonance spectra of hydro-
carbon free radicals make large changes as undesirable as they are unlikely.
Comparison of (1) and (2) shows how careful a balance is achieved in the neglect
of differential overlap [16]. Differences of the core Hamiltonian matrices in the
two methods are effectively adjusted for by using the resonance integral for
nearest neighbours as an adjustable parameter fitted to an observed spectral
interval. Small quantitative differences are to be expected. In particular, in.a
theory including overlap, the CoursoN-RUSHBROOKE theorem [8] stating that the
s-electron charge density in alternant hydrocarbons is a unit electronic charge in
each 2p atomic orbital is no longer valid. The charge densities will differ in a
small but possibly significant way from unity.

That overlap should be neglected in the theory of z-electrons is particularly
unfortunate in view of the extremely important role it plays in the elementary
theory of bonding in both the LCAO-MO theory [11] and the VB theory [12].
Lyxos and ScamEIsiNG [22] have pointed out that the eigenvectors of the overlap
matrix (maximum-overlap orbitals) closely resemble SCEF orbitals for the zero
overlap approximation. The overlap matrix and the effective Hamiltonian matrix
nearly commute. Each in effect conveys the information of the molecular geometry ;
both are closely related to the topological matrix [35¢], as the most important
off-diagonal elements correspond to non-vanishing elements of the topological
matrix. Courson and SoHAAD [79] have tested the reliability of the zero overlap
approximation in non-empirical calculations for the diatomic molecules H, and HF
and find that it leads to unsatisfactory results. To what degree zero differential
overlap is a bona fide approximation for orthogonalized orbitals [27] in SCF
theory is not yet entirely clear. It seems that the complete inclusion of overlap
is a necessary and inevitable step in the effort towards reliable self-consistent
field molecular wavefunctions.

The Seli-Consistent Field Wavefunction

The theory of the “best” antisymmetrized single-product wavefunction using
the core potential of GorrPERT-MAYER and SKLAR [17] and the semi-empirical
method of PArIsER and PARR is well documented in the literature [1, 13, 15, 16, 33,
34, 35]. Included below is such detail as is required to define necessary notation

* On an IBM 7090, with 32 K memory, the SCF calculation for anthracene takes about

16 minutes. The programme, with its necessary subroutines, has about 4000 machine language
instructions. Complete details and programme decks are available on application to the author.
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and to indicate departures from the neglect of differential overlap. We restrict
ourselves to hydrocarbons with an even number of “active” centres and a like
number of atoms.

The n-electron wavefunction chosen is the SLATER determinant of doubly
occupied molecular orbitals ¢;; these are linear combinations of carbon 2 pzx

atomic orbitals y,.. The number of carbon atoms is n(m = %) .

%:/ L) @) - (@) (@) | 3)

st

@i = L fuCui (4)

p= 1

The coefficients ¢,; are chosen to minimize the total energy X of the n-electrons.

B[ [y Hyyds - du ®)
H is the complete m-electron Hamiltonian
H — Z Hcore -+ Z 7_ (6)
1)

i=j
The GoEPPERT-MAYER and SKLAR potential [17] has the form

core 1 < y
Hj =~;w+;mv> (7a)

where the summation over y includes all carbon atoms in the molecule and U:{ is
the potential of a hypothetical ionized carbon atom Whieh has lost a sr-electron.

U () = U2 (1)~ [ dra i 2) (7h)

In this form, the theory negleets electron penetratlon into the charge cloud
surrounding the hydrogen atoms. The relevant penetration integral is about
1/, electron-volt. The effect is that the carbon atoms without bonded hydrogen are
made too electronegative with respect to the other carbons. If overlap is neglected,
this does not introduce serious uncertainties, because the charge density at each
atomic centre is constrained to unity. In the present paper, it will be necessary to
examine the effect of this approximation. Because of the way the potential is
defined, it is reasonable that y should approximately satisfy the characteristic
equation

— SV U] () = Wy (1) )

Wsp, the ionization potential of a s-electron in the trigonal (sp?p,) valence state
of carbon, has been estimated by MuLLIkEN [24] to be about — 11.28 electron-
volts.

The matrix elements H,, of the core Hamiltonian on the atomic orbital basis
may be expressed in terms of the repulsion integrals (1) and the penetration
integrals (o:uv)*. These elements are, on the diagonal,

H,, = Wap — #};y (u:ww) — M; (upe | ) (9a)

* (o ,uv)=—/ oY) g2 (1) 4 (1) dzy
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for nearest neighbour atoms,

H,, = 8 Wap + B— Z; (uv | o0) (9)
o#p
and, for the remaining elements,
H, = 8 Wop— Z (uv | g0). (Sc)
o #FY

Three centre penetrations and penetrations between non-adjacent atoms are
neglected. In benzene, the integrals (1:23), (1:13) and (1:33) are about 0.03, 0.1
and 0.01 electron volts respectively [18, 28]; these contributions are certainly
small compared to other neglected effects. The resonance integral f is retained as an
adjustable parameter used to fit the lowest singlet excitation of benzene. Its
theoretical value is

Bneory = —— (1:12) — (11 | 12) (10)
where 1 and 2 are adjacent atoms,

The integral approximations employed have been widely discussed. The
Coulomb interelectronic repulsions are estimated by the semi-empirical formulae
(11) — (13) of Pariser and PARR’s second paper [26]. The intervals between the
excited states in benzene depend only on the repulsion integrals; RUEDENBERG
[35¢] shows that the PArISER-PARR integral values are close to those required to
give an exact fit to the observed benzene spectrum when the MULLIKEN approxi-
mation is used for the multicentre integrals. The MULLIREN approximation [24]

for multi-centre repulsion inte-
Table 1. Coulomb and Overlap Integrals grals in LCAO-MO theory has
been discussed by RUEDEN-

Internuclear Coulomb Overlap®

Distance® Repulsion® BERG [35¢], by Parr and Com-
0 10.53 ‘ o PANION [27] and in somewhat
1.387 ‘ 730 0.25817 more detail by Huzinaca [18],
2.420 , 5.46 0.03829 who prefers it to the SRLAR-
2.794 4.90 0.01740 LoNDON approximation [36]
3.696 3.76 0.00229 for aromatic 2 ps-orbitals.
41N i 3.34 0.00071 : .
4.839 | 2.01 0.00015 More careful estimation of
5.037 | 2.80 | 0.00009 these contributions is difficult
5.588 ; 2.58 j 0.0 and probably unjustified, in
6.049 2.38 | 0.0 view of the semi-empirical
6.402 2.25 [ 88 estimation of the Coulomb in-
7.259 1.98 . R N Is. Th 1 i
7.392 i 1.95 ‘ 0.0 egrals. e overiap matrix

- has been estimated with hy-
s The distances, in A, are those occurring in phen- drogenic 2 pm-orbitals with
anthrene and anthracene with the assumption of regular effective nuclear charge 3.18

hexagonal rings with side 1.397 A. .
® Fnergy quantities, in this and subsequent tables, [87]. Perhaps atomic SCF or-

are in electron-volts. bitals might be more appro-
¢ Based on STO’s, with effective nuclear charge3.18.  priate, but we will see that the
spectral predictions are insen-

sitive to the inclusion of overlap, and, a fortiori, insensitive to uncertainty in the
estimate of overlap. The carbon-carbon bond distance in benzene is 1.397 A 157,
in the polycondensed hydrocarbons all bonds are assumed equal. CRUIKSHANK and
SpARKs [10] have given a critical survey of measured and theoretical bond lengths
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in napthalene, anthracene and related conjugated hydrocarbons. In anthracene
the lengths range from 1.369 to 1.437 A, with estimated standard deviations about
0.005 A. For simplicity, we have ignored these variations. The corresponding
variations in the nearest-neighbour overlap, Coulomb and resonance integrals are
4+ 0.012, + 0.07 e.v. and about + 0.4e.v. respectively. The changes in the
resonance and overlap integrals are not entirely negligible, but will be ignored
below nevertheless. The necessary penetration integrals have been estimated
using formulae given by RurpENBERG (See Appendix I for details). 8 is adjusted
to fit the first singlet transition of benzene at 4.9 e. v. Repulsion and penetration
integrals appear in Tab. 1.

A general set of equations for the LOAO coefficients has been given by RootrasN
[34]. To be solved are the eigenvalue equations

Fei=8¢ B (11a)
where ¢; is the column vector
€ = Tr{cy oy Cni) {11b)
and the effective Hamiltonian matrix F has elements
n n
S 1
F,=H,+ ; % Py [(uv | o) —5 (1o | ov)] (11¢)

The CouLson [6] charge-density bond-order matrix has elements

n

P[w == Z g1 Cui Cui (11(1)
i

and ¢; (= 2, 1 or 0) is the occupation number of the ith molecular orbital. Where €
is the matrix whose columns are the orbital vectors ¢;, orthonormality of the
molecular orbitals requires

g'80=1 (12)
It is convenient to define
F=F—Wep S (13a)
so that the eigenvalue equation becomes
PG =86k, (13D)

The energies E; have as zero reference the value Wep.

Excitation Energies

The ground state wavefunction y, of energy H, is a single determinant of
form (3). The excited states y;—p are obtained by promoting an electron from an
occupied orbital ¢; to an unoccupied one gy and forming either the triplet or the
singlet spin state. The matrix elements of the many-electron Hamiltonian (6)
between the ground and singly-excited states of a closed-shell molecule with
n-electrons are [33]

Cyisr | H [90) = V2 Fur
(11/)1:—)]9 I H [ 11,Uj~>l> — 57;7' Or1 By =0 Fry — gy Fy5 + 2 (ik ] Uy — (35 I k) (14)
Coisr | H | 3pj1) — iy Oy By = 0S4y Frg — O Fog— (47 | k)
where Fy; is the 7-jth element of the effective Hamiltonian operator on the mole-
cular orbital basis.

AT*
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n|2
Fy = Hy+ 3 [207]k) — (k| 1) (15)

Since the basis orbitals are self-consistent field orbitals, F is diagonal and the
diagonal elements are the eigenvalues ¥ in (13).

If overlap is neglected and if only the diagonal elements of the complete
Hamiltonian matrix are used, the pairing property of orbitals [32] leads to an
oversimplified interpretation of the spectra. DEwaAr and Loxeuer-Hiceixns [15]
introduce interaction between the configurations which are degenerate in HifcraL
theory. The most important degeneracy persists in SCF theory without overlap,
and is that between the excited states pm—1—>mr1 80d Pp-—mio. When overlap is
included, these states are no longer exactly degenerate, but remain nearly degene-
rate, so that configuration interaction is still necessary. In the Hamiltonian
matrix which is diagonalized to give the excitation energies, excitations from the
(m—1)th and mth molecular orbitals to the (m + 1)th and (m + 2)th are included.

Charge Densities and Bond Orders

Ever since the definition of molecular orbital bond-orders by CovLsox [6] there
has been an interest in the properties of these and related quantities of importance
in assessing the bond strengths in molecules. RUEDENBERG [35¢] discusses the
mathematical properties of a number of bond-order-like quantities for the case
in which the overlap matrix is simply related to the topological matrix and the
molecular orbitals are normalized eigenvectors of the topological matrix (essen-
tially HtorEL molecular orbitals). He introduces the generalized bond-order-like
quantity

fuw = %: i Cui €t | (1) (16)

where m; is the ¢th eigenvalue of the topological matrix. If the complete overlap
matrix is used and the orbitals are self-consistent field eigenvectors, the properties
outlined by RUEDENBERG are no longer applicable. The topological matrix loses
its overwhelming importance and the quantity (16) a measure of its interest.
However, it is desirable that a more general definition should reduce to an example
of (16) in the case in which RUEDENBERG’s limitations apply.

We adopt as the most convenient definition of the bond order between the
atoms y and v of the ¢th molecular orbital

iQ,lw = Cui ; Cot So'v (17)
with
Q/w = ; ’iQ/w gi

for the total bond order. MULLIKEN [24] has previously considered this quantity for
diatomic molecules. The diagonal elements of @ are the “‘gross atomic popula-
tions” [3]; iQu. is a measure of tho fractional charge of the ith molecular orbital

belonging to the uth atom
Z ’iQ;m = Z Cui S,Lw Cyi = 1 (18)

u w
The charge density of the éth orbital is exactly one electronic charge and the
total charge density is the number of electrons. If the orbitals are eigenvectors of
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the overlap matrix, () reduces to an expression similar to (16), in which f(m;) is to
be replaced by the ith eigenvalue of 8, and if S commutes with the topological
matrix we have a RUEDENBERG bond-order-like quantity.

The properties of the off-diagonal elements of @ are suitable for a bond-
order quantity. The simplest application, already considered by MuLLIREN [24], is
to a homonuclear diatomic molecule, for which it is easily seen that the bond
orders for doubly-filled bonding, non-bonding and antibonding orbitals are
+ 1, 0 and — 1 respectively. For benzene the s-orbitals are determined by
symmetry; the distinct elements of @ are

2 1
Qu:i?Qm:?;le:O;Qm:—? (19)

These are just the values of the CouLson bond-order matrix if overlap is neglected.
A comparison is intended between bond-orders for SCF wavefunctions when over-
lap is neglected and when it is included. The results (19) ensure that differences
are significant and not artifacts of an ill-chosen definition of the bond-order
matrix.

The bond-order matrix @ is simply related to the Covrsox matrix [6] and the
overlap matrix B '

Q=P 8 (20)

P and § are in general invariant under the transformations of the symmetry group
of the SCHRODINGER equation. Because the matrix product is noncommutative,
@ as defined above does not have this property. The desirable symmetry may be
introduced by redefining @ [3].

Q=3 (P-S+8P) (21)

Results

Calculations have been carried out for naphthalene, anthracene and phenan-
threne, as well as for benzene. The results are compared with observed spectra in
Tab. 2. Tt is apparent that, for prediction of spectra, the SOF method with zero
differential overlap gives results remarkably close to those when overlap is
included, and that, in the latter case, it is not important whether or not the
hydrogen penetration integrals are included. The appropriate value of the reso-
nance integral § is, of course, different in each case. For benzene, naphthalene
and anthracene, there is satisfactory agreement between the calculated and
observed energy intervals. These results are in substantial agreement with those
of PopLE [32] and PARISER [25].

The calculations for phenanthrene are less satisfactory. If no configuration
nteraction is used, the lowest transition is predicted to be polarized perpendicular
to the plane of symmetry of the molecule (1L,). This statement does not depend
upon detailed calculation, but is a simple consequence of the orbital pairing
property. When overlap is introduced, the qualitative effect is retained, even
though orbital pairing is no longer valid. In naphthalene, but not in anthracene,
limited configuration interaction pushes the 1L, level below the 1L, level. For
phenanthrene the levels become approximately degenerate. The observed lowest
excitation is polarized along the short axis of the molecule [23] and therefore is
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a 1Ly band [31]. There is some question about the assighment of the observed
triplet transition. From an analysis of the vibrational structure in phenanthrene

Table 2
Band? Symmetry Calculated Hnergy Observed Energy
Zero Overlap ‘ Including Overlap®
Spectrum of Benzene
1 1Bau 4.90 4.90 4.90 | 4.9¢
1L, 1By 5.31 5.40 5.39 6.14
1Ba, o LY 6.95 7.11 741 6.9¢
3Lq 3B, | 401 | 401 4.01 3.7
8Ba v | *Hu 4.46 4.46 445 (4.7t
3Ly | 3B 4.90 4.90 4.90 —
Spectrum of Naphthalene
1L, i 1B14 4.43 4.36 4.37 ! 4.4
L, b 1B, 4.37 4.34 4.35 4.5¢
1B, I 1B, 6.21 6.25 6.36 5.8¢
1B, 1 Bey 6.59 6.60 6.71 7.4e
3L, 3 Boy 3.41 3.05 3.05 2.68
2B, # By 4415 4.08 3.94 —
3L B, | 443 4.38 4.63 —
2B, Bou | 4.90 4.81 193 —
Spectrum of Anthracene
U By | 360 | 356 | 3.58 3.3¢
L, 1By 4416 4.08 4.05 | [3.5]
1B, 1By ‘ 5.64 5.61 / 5.82 ; 4.8
1B, 1 Bay 6.67 6.60 ‘ 6.78 \ 6.7¢
3L, 3By 2.23 2.19 2.20 1 1.8¢
5B, 3By [ 3.98 3.89 3.65 —
3Ly 3B | 4.16 4.08 4.50 i —
9B, B | 539 5.25 544 | —
Spectrum of Phenanthrene

1L, id, 4.36 432 | 4.36 1 3.6
17, J 1B, 4.32 4.29 4.33 J 4.0
1B, | 1B 5.60 5.52 5.62 ‘ 4.9°
1B, L4, 5.74 5.69 5.78 6.6°
3L, . 3B, 3.33 3.29 3.33 2.7¢
3B oM 4.03 3.97 4.00 —
B, . B, 4.33 4.22 4.32 : —
3Ly YN 436 | 429 | 4.39 | —

a Ref. 32. PraT?’s Lo, Ly, Bs and By correspond respectively to CLAR’s p, «, § and £,
» Hydrogen penetrations ignored and included, respectively.

¢ Ref. 20.

4 E. MiLLER LayToN, JR.: J. mol. Spectr. 5, 181 (1960).

e D. R. Kearns: J. chem. Physics 86, 1608 (1962).

£ J. R. PraTT: J. mol. Spectr. 9, 288 (1962).

¢ D. F. Bvans: J. chem. Soc. 1957, 1351.

1 Ref. 30.

and phenanthrene-d-10, PEsTEIL et al. [30] conclude that the triplet belongs to the
same (spatial) transition as the singlet at 28900 cm~* (3.6 e.v.). The triplet
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should therefore be polarized along the long axis of the molecule. This assign-
ment is at odds with that of CLAR and ZaNDER [4] based on correlation of singlets
and triplets in a series of condensed aromatic hydrocarbons. Since the 1L, transi-
tion is quite weak [20] (f = 0.003), it seems that the spin-forbidden 3Ly transition
might be too weak to observe; on the other hand, the 1L, transition is relatively
intense (f = 0.18). The calculations predict that the lowest triplet is polarized along

Table 3. Charge Densities and Bond Orders

| oo overtop | Hyatezen | W Harosen
|
‘ 0y { 1.0 0.9760 0.9963
C Qn L 10 L 0.9968 1.0002
L Qe 1.0 1.0544 1.0069
( 12 0.7486 0.7487 0.7498
0y ? Qs L 0.5798 0.5799 0.5788
L Qe ¢ 0.5316 0.5306 0.5306
i Qo0 | 05551 0.5560 0.5571
Qn 1.0 0.9378 0.9929
Qo 1.0 1.0570 1.0084
Qs 1.0 0.9768 0.9946
! 2 b Qs 1.0 L 0.9973 1.0006
j Q2 0.6124 0.6105 0.6121
“\5 WY s Qs 0.5109 0.5127 0.5139
Qs 0.7709 0.7719 0.7733
Qer 0.5517 0.5504 0.5492
Qs 0.4968 0.4957 0.4947
Qu 1.0 0.9770 0.9957
Qs 1.0 1.0454 1.0047
Qs 1.0 0.9779 0.9989
Qs 1.0 0.9944 0.9995
Qss S0 0.9971 1.0005
" Qss 1.0 0.9714 0.9962
Q L 1.0 1.0368 1.0045
1218/ \e 3 QIZ | 0.4658 0.4554 0.4564
1 /\:/\8—7@ a : Qs b0.5710 0.5715 0.5704
5 65 Q.| 07180 0.7182 0.7201
Qus ‘ 0.6141 0.6140 0.6120
Qs | 0.7140 0.7150 0.7167
Qe | 05811 . 05799 | 05789
| Gne y 04272 0.4175 0.4205
L O ' 0.5748 05826  0.5832
L Qo 0.8105 0.8178 . 0.8184

the long axis (2Lg) and that the next lowest triplet is 0.7 . v. removed. In the
table we have adopted this assignment,

For the excitations m — (m -+ 2) and (m—1) — (m + 1), associated with
Prarr’s [31] states Lp and By, a Hamiltonian matrix

<E]1 E12>
E12 EZZ

Is encountered; its eigenvalues are 1/2 (B, + Egp) + [(Byy — Epp)? + 4 B 2JV2.
For the singlet excitations, &, is positive, so that the lower state is 1L;; for the
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triplets, however, E,, is negative and the upper state is 3L;. With zero differential
overlap H;; = E,, and, as well, degeneracy is predicted between 1Ly and 3Ly [25].
When overlap is included, it is found that the quantities 1/2 (E,; + H,,) and B,
suffer only minor changes (for the triplet as well as the singlet), but &,; and E,,
are no longer equal. The calculated splitting of Ly and Bp is increased, as the
sketch illustrates, so that the 3Ly level is anomalously more energetic than the
1Ly level. Interaction with

1B, 1

U —— s,

- 8By

nearby higher configurations is expected to reverse the shift of the triplet level;
the singlet will not be so strongly affected since the higher singlets are further
removed (above 1Bp).

In Tab. 3 appear the charge densities and bond-orders calculated with neglect
of overlap, with overlap but neglected hydrogen penetrations, and, finally, with
overlap and hydrogen penetrations included. The bond orders are remarkably
insensitive to the approximation employed — the largest difference is 2%,. More
sensitive are the charge densities (diagonal elements of §). For zero overlap these
are constrained to unity. 1f overlap is included but hydrogen penetration ignored,
the atoms at joints of the molecular topological diagram are relatively electro-
negative and charge shift is predicted. When hydrogen penetrations are included
the charges all become nearly unity, showing that the charge shift is an artifact
of the neglect of hydrogen penetrations. With the present choice of core pene-
tration integrals slight shifts to joint atoms occur, but these should not be regarded
significant. JuLe and PuLzmMax [19] have examined the effect of introduction of
hydrogen penetrations into the core potential. In estimating diagonal elements
of the core Hamiltonian they neglect carbon penetrations as well as hydrogen
penetrations. For primary, secondary and tertiary carbons in methylcyclopropene,
fulvene and heptafulvene, the sum of the carbon and hydrogen penetrations is
practically constant (2.34 e. v.). The neglect of carbon penetration integrals may
be considered equivalent to inclusion of hydrogen penetration in the skeletal
potential Wy [26].

Discussion

The present results confirm the remarkable success of the approximation of
zero differential overlap. Both the spectral predictions and the calculated bond-
order matrix are insensitive to the inclusion of atomic orbital overlaps. These
statements may be traced to the overwhelming importance of the topology of the
molecule; geometrical considerations play only a secondary role. RUEDENBERG
[35a] has detailed the division of the energy contributions into short-range and
long-range forces — the short-range forces are intimately related to molecular
topology. The bond order matrices are quite similar to those derived with simple
MO theory [7], so similar that the simple theory relating mobile bond-order to
bond length may be applied without change. The approximate linear relationship
between bond-order and bond-length devised by CRUIKSHANK [10]

Py = 1.57— 0.267 Q,,, (22)
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may be applied with unmitigated success to the present data.

If carbon penetrations are included, it is necessary also to include hydrogen
penetrations. Otherwise carbon atoms without bonded hydrogens are considered
relatively too electronegative, and the predicted charge distribution is distorted.
The estimated bond-orders, however, are insensitive to the exclusion of hydrogen
penetrations. So also are the spectral predictions, because of the manner in which 5
as an empirical quantity compensates for errors.

It is to be expected that inclusion of overlap will cause as little modification in
SCF calculations for non-alternant molecules and for free radicals as for the
simple hydrocarbons presented above. Extensive calculations to confirm this
expectation are being undertaken.

Acknowledgement. Stimulation and criticism by my fellow students have been most helpful.
The support and criticism of Prof. Leland C. ALLEN was invaluable.

Appendix I — Penetration Integrals

RuepexBERG [35d] has given formulae for the integrals of the core Hamiltonian in
which the carbon atoms are neutral. It is assumed that a carbon atom may be represented as a
nucleus of electronic charge 4 (the K-shell electrons are assumed to completely screen two
units of charge), surrounded by the charge cloud of a single 2s-electron and three orthogonal
2p-electrons. The electron charge cloud is equivalent to the tetrahedral sp® configuration.
SrATER orbitals are adopted for the “‘static” electrons, as was done for the “active” 2psm-orbital
Tt is assumed that the effective nuclear charge for all “static” orbitals is the same.

The value Z= 3.18 is adopted as the effective nuclear charge for the “static” as well as
the “active” orbitals. RUEDENBERG discusses the choice of a different set of screening para-
meters based on minimization of the z-electron energy and simultaneous adjustment of the
core screening to reproduce the electron affinity of carbon. The core orbitals he requires are
much more diffuse than those used here, and the related penetration integrals much larger
than those. previously employed [18, 28]. The energy minimization depends upon the diffe-
rence of two large quantities; neglect of ¢g-z-interaction implies imperfectly understood errors.
Further, it is more usual that atomic orbitals appropriate in LCAO theory are contracted, not
expanded, from free atom orbitals. Under these circumstances we feel justified in reverting
to the ad hoc adoption of the ZENER-SLATER screening constant [37].

The hydrogen atom is assumed a proton partially screened by a 1s electron with effective
nuclear charge 1.0in the series of caleulations in which hydrogen penetrations are included. The
C-H bond length is 1.08 A [5].

The necessary penetration integrals are (1:22) = 0.708 e.v.

(h:11) = 0.607 e.v.
(1:12) = 1.685 e.v.

If overlap is neglected, penetration integrals are unnecessary [19] and the value § =
— 2.39 e.v. provides the fit to the lowest excitation of benzene. If hydrogen penetrations are
neglected, the appropriate value of 8 is — 4.48; e.v., and if they are included, it is — 4.64 e. v.
The “‘theoretical” value of § is, from (10), — 3.99 e. v. The agreement is quite satisfactory,
suggesting that it may be unnecessary to introduce § as an empirical parameter. In Tab. 2,
the predicted spectra tend to be slightly more blue than the observed, except in the base of
benzene, so that a reduced estimate of § would not introduce large discrepancies.

Appendix 11

m-electron SCF machine programmes have been described by a number of authors. The
only feature of the present programme that is unusual is the storage and referencing of the
repulsion supermatrix. The element (u» | go) is not distinet from (u» | og) or (go | uv) — these
symmetries must be exploited if memory capabilities are to be used to the best advantage.
Together they constitute a saving of about 85%/, of the storage necessary for the repulsions
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referenced simply as four-dimensional arrays. The algorithm assigning an index 7 to an element
of the supermatrix is: —

(7) Order u, v so that u > »
1
(@) I=v+5plp-1)

(¢91) Repeat (¢) and (i) for g, ¢ assigning an index J.
() Repeat (7) and (#7) for I, J assigning the index 7.
It is readily seen that there is a 1-to-1 correspondence between the indices ¢ and distinct
elements of the repulsion supermatrix.
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